Journal of Fluorine Chemistry 112 (2001) 165-171 www.elsevier.com/locate/jfluchem # Room temperature preparations of second and third transition series tetrafluorides and a possible novel structure type for OsF₄ and RhF₄ W.J. Casteel Jr. a,c, D.H. Lohmann, N. Bartlett A,b,* ^aLawrence Berkeley Laboratory and Department of Chemistry, Chemical Sciences Division, University of California, Berkeley, CA 94720, USA ^bDepartment of Chemistry, University of British Columbia, Vancouver, BC, Canada V6T 121 ^cAir Products and Chemicals Inc., Allentown, PA 18195, USA Received 15 June 2001; accepted 31 August 2001 Dedicated to Dr. Karl O. Christe on the occasion of his 65th birthday #### Abstract The polymeric tetrafluorides, MF_4 (M = Mo, Ru, Pd, Re, and Os) have been precipitated from their MF_6^{2-} salts in liquid anhydrous hydrogen fluoride (aHF) at ~ 20 °C. For M = Ru, Os and Pd, AsF_5 can be used to displace the tetrafluoride, but this strong F^- acceptor is too strongly oxidizing for use in making MoF_4 and ReF_4 , for which SbF_5 is effective. X-ray powder diffraction photograph (XRDP) show the MF_4 to have the same structures as those from higher temperature preparations, when previously known. XRDP of OsF_4 are very like those of RhF_4 and indicate a close structural relationship of the pair, and a significant structural difference from the PdF_4 type structure adopted by M = Pd, Pt, Ir, and Re. A new, two-dimensional, 'raft' structure is proposed for OsF_4 and RhF_4 . © 2001 Published by Elsevier Science B.V. Keywords: Syntheses; Tetrafluorides; Crystal structures; RhF4; OsF4; ReF4 # 1. Introduction The binary fluorides of the second and third transition series elements provide a wide range of oxidation states for each element, especially for the platinum metals. For Ru, Rh, and Ir the known range is from M^{VI} to M^{III}. Since the coordination number is commonly six, this means that the structures vary from the three-dimensional F-bridged network of the trifluorides [1], to the molecular hexafluorides [2]. This has provided for investigation of the effect of oxidation state (and the d electron configuration) on M–F bonding in these elements [3]. In the tetrafluorides, the two F ligands that are non-bridging can be *trans* as in NbF₄ [4], and RuF₄ [3] or *cis* as in IrF₄ [5], PtF₄. (Here, the unit cell given was a pseudomonoclinic cell with a = b, this being half the diagonal of the true orthorhombic F cell [6,7], and PdF₄ [8,9]). The M–F–M bridging angle can also vary widely, being nearly linear in NbF₄ [4] and close to 135° in RuF₄ [3] and PdF₄ [8,9]. Indeed such variations, and the absence of a predictively useful explanation for them, prompted efforts to prepare other tetrafluorides, when a convenient new synthetic approach was found [10]. This provided authentic OsF₄, and ReF₄, for the first time and also an easier route to previously known tetrafluorides including MoF₄ [11], RuF₄ [12], RhF₄ [9] and PdF₄ [9]. X-ray powder diffraction photograph (XRDP) of OsF_4 closely resembled those of RhF_4 and were, in important aspects, different from those having the PdF_4 type structure [8,9], i.e. M = Ir, Pt, Pd and Re. This prompted a new evaluation of structural possibilities for RhF_4 and its structural relative OsF_4 . The new preparative method for these tetrafluorides, and a possible structural model for the Rh and OsF_4 are the subjects of this paper. # 2. Results and discussion The appropriate second and third transition element $[MF_6]^{2-}$ salts were prepared as previously described [13], and the tetrafluorides were derived from them by precipitation, at room temperature, from aHF solutions, using various acids. The choice of acid was determined by (1) convenience, (2) the F^- acceptor strength of the desired tetrafluoride, and (3) the redox limitations. Because they are gases, BF₃, and AsF₅, are both convenient F⁻acceptors. (GeF₄ is another, which proved to be excellent for AgF₃ precipitation [14], but it was not tried in ^{*}Corresponding author. this context.) Unfortunately, BF₃ is not a very strong F⁻ acceptor [15,16], and for related reasons not very soluble in aHF. It proved to be ineffective in producing the tetrafluorides. With the more easily oxidized tetrafluorides, ReF₄ and MoF₄, the AsF₅ was too potent an oxidizer and rapidly gave M^V products; so for these tetrafluorides it was necessary to employ SbF₅ as the F⁻ acceptor. The syntheses can therefore be summarized by the following equations: $$\begin{split} [MF_6]^{2-} + 2AsF_5 \to MF_4 \downarrow + 2[AsF_6]^-, \quad M = Os, Ru \text{ and Pd} \\ & (1) \\ [MF_6]^{2-} + 2SbF_5 \to MF_4 \downarrow + 2[SbF_6]^-, \quad M = Re \text{ and } Mo \end{split}$$ Because the $[MF_6]^{2-}$ salts used in this work were largely potassium salts, deriving from the earlier study [13], these syntheses involved much tedious washing with aHF in which the KAsF₆ and KSbF₆ are of low solubility. For any future work it would be worthwhile to prepare the Li₂MF₆ salts since LiAsF₆ and LiSbF₆ are much more soluble in aHF than their potassium counterparts. As already noted ReF₄ and MoF₄ reduce AsF₅, indicating that the $M^{\rm IV}$ oxidation state at the left hand end of each transition series is at least a moderately reducing one. But with the nuclear charge increase along the series we quickly pass to tetrafluorides that are stable with respect to AsF₅. In PdF₄ we have a tetrafluoride capable of oxidizing XeF₂ to XeF₄ in aHF at room temperature [17]. Even RhF₄ is easily reduced. It is pertinent that as Sharpe pointed out long ago, $[RhF_6]^{2-}$ salts [18], like those of $[PdF_6]^{2-}$ [19], are easily made in solution in BrF₃ made basic with alkali fluoride. But in neutral BrF₃ a pink complex is formed ([18] and present work), which is probably BrF₃·RhF₃, since it is diamagnetic, and its pyrolysis gives the purple–red pyrochlore-form of RhF₃. This purple–red product had been identified in Sharpe's early work [18] as RhF₄. The pyrochlore-form of RhF₃ is akin to its FeF₃ relative reported by dePape and Ferey [20], and to (rhombohedral) pyrochlore-form NiF₃ which is generated [21] in the slow thermolysis of NiF₄ above -60 °C. XRDP of the tetrafluorides made by this low temperature route showed that the same structures pertained as in those same fluorides made by other methods. These photographs disclosed the variety of structure types set out in Fig. 1. All of the patterns were indexed except that of MoF₄ the strong-line pattern of which, however did agree with the d Fig. 1. Observed structure types of the second and third transition series tetrafluorides. SnF₄ type (\square), [4]; RuF₄ type (\bigcirc), [3]; PdF₄ type (\bigcirc), [8,9]; possible OsF₄ type (\triangle), [9] and this work. spacings given by Payne and Asprey [11]. Curiously, OsF₄ showed an almost identical XRDP to that of RhF₄ and distinctly different from that of its pseudo-isoelectronic relative RuF₄. It had been noted in the early work [9] that the XRDP of RhF₄ exhibited puzzling differences from those of IrF₄ and its isostructural neighbors PdF₄ and PtF₄. The principal distinguishing features of the RhF₄ XRDP were the broadness of the diffraction lines (which were broad even in high temperature preparations, which should have favored recrystallization) and the absence of some lines characteristic of the PdF₄ type pattern [8,9]. The OsF₄ pattern exhibited the same peculiarities. It was now clear that whatever structural changes set RhF₄ apart from PdF₄, the same also applied to OsF₄. # 2.1. A possible new structure type for OsF₄ and RhF₄ The PdF₄ type structure is like that of rutile with every other metal atom missing in the stacks of edge-shared MF₆ or F₆ octahedra. Fig. 2 represents the (polar) structure as viewed down the stacks of superimposed edge-shared octahedra. Since X-ray scattering, at a particular diffraction angle, is approximately proportional to the atomic number of the atom, the scattering by Os (atomic number = 76) and Rh (atomic number = 45) outweighs that from four F atoms out of phase with the metal atoms $(4 \times \text{atomic number } 9)$. We therefore expect that in such a structure 2 2 0 reflections should be observed, and perhaps be even a strong-line in the OsF₄ case. In the earlier work ([9], Table 3), it was noted that this reflection was very weak (vvw) in RhF4, whereas in PdF₄ the same reflection ([9], Table 1), was strong (s). (In XRDPs of RhF₄, also, the 220 reflection is close to the position of a strong reflection from R-RhF₃ [1], to which impurity the weak observed line in RhF4 could be attributed.) But Rh scattering is not as dominant in RhF₄ as that of Os in OsF₄ so the failure to observe a 220 reflection in the XRDP of the latter provided the decisive indicator that the PdF₄ type structure was not appropriate for these tetrafluorides. Fig. 2. PdF₄ type structure—projection in the 0 0 1 plane. Table 1 Pyrochlore RhF₃ X-ray powder data (Cu K α , Ni filter) with a face-centered cubic (probable space group Fd3m) unit cell, $a_0=10.292(5)\,\text{Å}$; $V=1090\,\text{Å}^3$ $1/d^2 \times 10^4$ I/I_0 h k lObserved Calculated 3 1 1 5 1 1; 3 3 3 711;551 731;553 820;644 822;660 751;555 911;753 921;761;655 9 3 5; 7 7 1; 755 1022;666 1111;766 1131;971;955 Table 2 X-ray powder data (Cu K α radiation, Ni filter) for OsF₄, F orthorhombic cell with a=9.89(1) Å, b=9.36(1) Å, c=5.70(1) Å, z=8, V=528 Å³ | <i>I</i> / <i>I</i> ₀ | $1/d^2 \times 10^4$ | | h k l | |----------------------------------|---------------------|------------|-------| | | Observed | Calculated | | | w | 431 | 409 | 200 | | | | 456 | 020 | | vs | 523 | 524 | 111 | | | | 865 | 22(| | W | 1351 | 1341 | 3 1 1 | | w | 1454 | 1437 | 1 3 1 | | S | 1636 | 1635 | 400 | | | | 1639 | 202 | | m | 1827 | 1826 | 040 | | m | 2099 | 2092 | 420 | | | | 2095 | 2 2 2 | | w | 2969 | 2983 | 113 | | vw | 3269 | 3262 | 15 | | vs | 3473 | 3461 | 440 | | | | 3464 | 2 4 2 | | vw | 3796 | 3801 | 3 1 3 | | vw | 3877 | 3896 | 133 | | W | 4699 | 4690 | 442 | | | | 4714 | 3 3 3 | | ms | 4940 | 4919 | 0 0 | | | | 5722 | 153 | | | | 5743 | 460 | | vw | 5758 | 5746 | 262 | | | | 5785 | 2 2 4 | | m | 6579 | 6539 | 353 | | | | 6555 | 404 | | m | 6748 | 6745 | 0 4 4 | | w | 7330 | 7304 | 080 | | m | 8436 | 8390 | 444 | | m | 8977 | 9027 | 064 | | W | 11544 | 11525 | 020 | | m | 12268 | 12223 | 084 | | m | 13362 | 13379 | 175 | | VW | 13900 | 13855 | 484 | As has already been noted, the RhF $_4$ and OsF $_4$ XRDPs are strikingly similar, and not only in the absence (or weakness) of the 2 2 0 reflections, but also in the broadness of the general $h\,k\,l$ reflection lines. The two fluorides evidently share a common structure. Aside from these features that distinguish the XRDPs of these two fluorides from those of the PdF_4 type, however, the patterns otherwise exhibit a close relationship. All of the patterns can be indexed on the basis of a face-centered orthorhombic cell (see [9] and Table 2). In the PdF_4 type structure (see Fig. 3a) each octahedrally coordinated M (i.e. $[MF_6]$) is edge-shared with an octahedral set of $[F_6]$ above and below it in the stack. Fig. 3. (a) Polar PdF₄: 3D structure; and (b) 2D "raft" structure for OsF₄ and RhF₄. Fig. 4. The two surfaces of the proposed 'raft' structure for OsF₄ and RhF₄: filled circles for non-bridging F on the top surface, open circles for the same on the bottom surface. Reflecting A in the *ab* plane converts it to B. The other two F of the $[MF_6]$ (trans to each other) are shared with two $[MF_6]$ octahedra. These are oriented roughly at right angles with the first, $[MF_6]$ and pitched always on the same side (above or below on the $[MF_6]$ stacking axis, z) to give the three-dimensional polar array represented in Figs. 2 and 3a. This arrangement always has the cis non-bridging F of each $[MF_6]$ on the same side (up, or down, on the stacking axis, z). It will be recognized, from Fig. 3b, that if linkage of the $[MF_6]$ is changed, so that the cis non-bridging F ligands on adjacent $[MF_6]$ are alternately up and down, a two-dimensional ('raft') structure results. Close-packing of such 'rafts' requires that the non-bridging F of one such 'raft' inter-lock with the adjacent nonbridging F of the adjacent 'raft'. Fig. 4 represents these non-bridging F on the surface of each raft, filled circles for those on one side and open circles for those on the other. For each face-to-face contact there are two stacking possibilities. These can be visualized with the two 'unit cells' of the raft structure labeled A and B. (Reflecting A in the ab plane produces arrangement B.) Let the filled circles represent up F and the open down F. The up of A is the down of B, and vice versa. If we stack A on A or B on B (filled circles over filled, unfilled over unfilled), we see that the M atoms would be superimposed. To mesh A with B it is necessary to translate A or B by $\pm 1/4a$. If we mesh A with B or vice versa, we therefore see that the M do not superimpose. For the latter arrangements the projection of the M atom array into the ab plane is represented by a simple rectangle of sides quarter a, quarter b. The consequence of randomly stacking 'rafts' A and B therefore satisfies our need to have no significant diffraction from the 2 2 0 planes. Also, since the fit A on A (or B on B) is not exactly the same as A with B, the inter-raft separation will not be exactly the same for both. That accounts, at least partially, for the line broadening in the XRDP. # 2.2. Why the structural variety? It is clear from the non-equivalence of the RuF₄ and OsF₄ structures on the one hand, and the RhF₄ and IrF₄ on the other, that the number of electrons in the d electron configuration has no important influence on which structure is adopted. Certainly, the effective nuclear charge increases from left to right in each transition series. Also, that increase with atomic number is more dramatic for the second series than for the first, as the molecular instability and oxidizing patterns of the hexafluorides indicate [22]. We therefore expect the F ligands to be more highly polarized in the second series, by the nuclear charge of M, than in the third. This should render the F ligands of the second series fluorides smaller than those of their third series relatives. Certainly PdF₄ [8,9] has a smaller formula-unit volume than isostructural PtF₄ [6,7], 63.20 versus 63.57 Å³, which is almost the same as the difference in the formula-unit volumes of the metals themselves (14.71 versus 15.09 \mathring{A}^3) [23]. The degree of covalency in RhF₄ is therefore likely to be greater than in IrF₄, and greater in RuF₄ than in OsF₄. But, if so, the degree of covalency in the M-F bonding does not determine the structure type, since PdF₄ should have higher M-F covalency than RhF4, which should be more covalent than IrF₄, which has the same structure as Table 3 X-ray powder data (Cu K α radiation, Ni filter) for ReF₄ (F orthorhombic, pseudo-tetragonal, with a=b=9.61(2) Å, c=5.66(1) Å, z=8, V=522 Å³, possible space group Fdd2) | I/I_0 | $1/d^2\times 10^4$ | | h k l | |---------|--------------------|------------|--------------| | | Observed | Calculated | | | s | 537 | 529 | 111 | | w(br) | 867 | 866 | 220 | | m(br) | 1401 | 1395 | 3 1 1; 1 3 1 | | s | 1696 | 1683 | 202;022 | | _ | _ | 1732 | 400;040 | | vw | 2138 | 2116 | 222 | | _ | _ | 2165 | 420; 240 | | vw | 2240 | 2261 | 3 3 1 | | w(br) | 3048 | 3029 | 113 | | _ ` ´ | _ | 3127 | 511;151 | | vs(br) | 3450 | 3414 | 422;242 | | . , | | 3465 | 440 | | w(br) | 3920 | 3892 | 3 1 3; 1 3 3 | | _ ` ´ | _ | 3994 | 531;351 | | _ | _ | 4331 | 620; 260 | | vvw | 4723 | 4758 | 3 3 3 | | w(br) | 4999 | 4994 | 004 | PdF₄! Moreover, ReF₄, on the left in the third transition series appears to have the PdF₄ structure type (see Fig. 2, and Table 3). If this is established, there will be no clear trend for the structure type dependence on Periodic Table location. Here we have a puzzle for future workers to sort out! #### 3. Experimental Apparatus and methods for the work using liquid HF were as described in [21] and references therein. For the aHF-based work the reaction vessels routinely used were of three types. Single armed reaction vessels consisting of a FEP tube sealed at one end and joined to a Teflon valve and two armed reactors consisting of two such FEP tubes, joined to a Teflon valve by means of a Swagelok Teflon tee piece. Such apparatus was used for reactions involving aHF in which pressures would not exceed 2 atm FEP tubes were sealed by heating one end over a flame, pinching it shut with pliers when it had softened as signaled by increased transparency. Teflon valves, Fig. 5, consisted of a Teflon valve body, a Kel-F stem containing an inserted Teflon stem tip, and Teflon packing washers. These valves were always attached to the apparatus with the seat side of the valve exposed to vapors from highly acidic oxidizing solutions, which could only contact the Teflon tip of the stem, when the valve was closed. The Teflon packing nuts were pressed against the stem and valve body, to make a seal, by means of an aluminum backing washer and a screw tightened nut. Connections were made to the inlet and outlet of the valve by means of 1/4" Swagelok fittings, or through 1/4" FEP tubing sweated on to a knurled inlet tube at the seat side of the valve. # 3.1. Drybox Involatile, air-sensitive materials were handled in the dry Ar atmosphere of a Vacuum Atmospheres Corp., DRILAB. Freedom of the atmosphere from significant oxygen, or water contamination was judged by the continued burning of an incandescent filament. # 3.2. Reagents Anhydrous hydrogen fluoride (aHF) 98% or better, as obtained from Matheson (Newark, CA) was dried using either dioxygenyl salts [24] (O_2SbF_6 , or $O_2Sb_2F_{11}$), or K_2NiF_6 (Ozark–Mahoning–Pennwalt). The commonly used reagent gases BF_3 (Matheson), PF_5 , and AsF_5 (Ozark–Mahoning–Pennwalt, Tulsa, OK) were each checked before use by IR spectroscopy and when found to be free of major volatile impurities were used without further purification. The much less volatile liquids BrF_3 (Matheson) and SbF_5 (Ozark–Mahoning) were generally distilled out of their cylinders directly into reaction vessels. Bromine usually accompanied BrF_3 distillation, however, since this served as a useful diluent and was a by-product of BrF_3 oxidations, further purification was not carried out. When small amounts of volatile O_2SbF_6 impurity in the SbF_5 could not be tolerated, it was removed by exposing the distilled SbF_5 to C_6F_6 (PCR, Gainesville, FL) which was oxidized to $C_6F_6^+$ by any O_2^+ present [25]. # 3.3. X-ray powder diffraction photograph (XRDP) Debye–Scherrer photographs were taken on General Electric Precision Powder cameras (45 cm circumference) using Ni filtered, Cu $K\alpha$ radiation. Powder samples for Fig. 5. Teflon valve schematic. XRDP were loaded into 0.3 or 0.5 mm diameter quartz capillaries (Charles Supper Co., Natick, MA) inside the DRILAB and temporarily sealed with Kel–F grease (Halocarbon Product Corp., N. Augusta, SC). The capillaries were finally sealed outside the DRILAB by drawing down using a micro-torch. ### 3.4. Magnetic measurements Variable temperature magnetic susceptibility data were collected on a SQUID magnetometer (S.H.E. Corp., and Quantum Dynamics). Samples were held in cylindrical containers made of two Kel–F caps, one fitting inside the other. These were passivated with 2 atm of a F₂/AsF₅, or F₂/BF₃ mixture overnight before use. Samples were made up in the DRILAB. Typically measurements were taken at 5 and 40 kG between 6 and 280 K. #### 3.5. Specific syntheses #### 3.5.1. Pyrochlore-form RhF₃ The preparation of the BrF₃ adduct RhF₃ (which was shown to be diamagnetic in this work) and its decomposition to purple–red pyrochlore-form RhF₃ followed the method described by Sharpe [18] for 'RhF₄'. Table 1 gives the indexing of the XRDP for this material. #### 3.5.2. Preparation of OsF_4 K_2OsF_6 [13] (600 mg, 1.5 mmol) in a T assembly was dissolved in aHF (6 ml) at room temperature. Addition of AsF₅ gave an immediate precipitate of a dense yellowbrown solid. When the solution was colorless, AsF₅ addition was stopped. (KAsF₆ side product has low solubility in the presence of dissolved AsF₅.) Decantation and back distillation [21] was repeated 10 times to remove KAsF₆ from the OsF₄. The aHF and any AsF₅ were evacuated through a sodalime scrubber dedicated to arsenic waste. A nearly quantitative yield of OsF₄ was obtained, there being some loss in the decantation steps. X-ray powder data, Table 2, were indexed completely on the basis of an F orthorhombic unit cell. Variable temperature magnetic susceptibility measurements indicated a low, approximately temperature independent paramagnetism, consistent with known octahedral, third transition series d⁴ systems. # 3.5.3. K_2OsF_6 with BF_3 BF_3 added to a solution of K_2OsF_6 (492 mg, 1.3 mmol, in 5 ml aHF) gave an orange insoluble solid (207 mg). This was amorphous to X-rays. Addition of AsF_5 in aHF converted this to yellow–brown OsF_4 , as indicated by XRDP. # 3.5.4. K_2RuF_6 with BF_3 Interaction of K_2RuF_6 (600 mg, 2.0 mmol) with BF_3 gave an insoluble orange solid with no XRDP. Interaction of this with AsF_5 in aHF produced deep pink RuF_4 , proved by XRDP [3]. # 3.5.5. K_2ReF_6 with AsF_5 Addition of AsF_5 to a pale pink solution of K_2ReF_6 [13] in aHF precipitated a pale pink solid. It quickly dissolved (\sim 5 min) in AsF_5 -rich aHF to a green solution, indicating that oxidation of ReF_4 to green ReF_5 by AsF_5 had occurred [26]. # 3.5.6. Preparation of ReF₄ Excess of SbF₅ (1 ml, 14 mmol) in aHF was poured into an aHF solution of K_2ReF_6 (295 mg, 0.78 mmol) to give a pink precipitate. In \sim 30 min some of the pink solid dissolved in the SbF₅-rich solution and gave a pale blue solution. The remaining solid was washed in the usual way to leave 110 mg (0.32 mmol, 42% yield based on ReF_4). The XRDP data (Table 3) were indexed on the basis of a of PdF_4 type cell. #### 3.5.7. Preparation of MoF₄ MoF₄ was made in the same manner as ReF₄. To a green solution of K_2MoF_6 [13] (410 mg 1.4 mmol) in aHF, in a T reactor, a solution of SbF₅ in aHF was slowly decanted to produce a pale green precipitate. Addition of the SbF₅/aHF solution, beyond the point at which the supernatent became colorless, caused some dissolution of the green solid, producing a pale green solution. This product was washed and dried in the usual way [21]. The green solid (110 mg, 0.58 mmol, 41% yield based on MoF₄) proved to be very poorly crystalline, but the X-ray powder data matched the strongest lines in the pattern described by Payne and Asprey [11] for their MoF₄. It was not indexed. # 3.5.8. K_2MoF_6 with AsF_5 Addition of AsF₅ to a solution of K₂MoF₆ in aHF produced a green solid which on standing in AsF₅/aHF solution quickly became pale, tan, indicative of MoF₅ formation [27]. # 3.5.9. Preparation of PdF₄ K_2PdF_6 (prepared by the method of Sharpe [19]) gave a yellow–orange solution in aHF. Addition of excess AsF_5 , with rapid stirring of the solution, quickly produced a brown solid. With the reactor continuously agitated and a high AsF_5 concentration maintained (\sim 12 h) in the AHF, the brown solid gradually took on the pink to red color typical of PdF_4 [9]. XRDP of the pale red solid showed it to be identical to those of PdF_4 prepared by high-pressure fluorination. # Acknowledgements The authors gratefully acknowledge the support of the bulk of this work by the Director, Office of Basic Energy Sciences, and Chemical Sciences Division of the US Department of Energy under contract number DE-AC-03-76SF00098. The pyrochlore-form RhF₃ (previously believed to be RhF₄) was prepared at U.B.C. with support from the National Research Council of Canada. #### References - M.A. Hepworth, K.H. Jack, R.D. Peacock, G.J. Westland, Acta Crystallogr. 10 (1957) 63–69. - [2] B. Weinstock, G.L. Goodman (Eds.), Advances in Chemical Physics I, Prigogine Interscience Publishers, London, 1965, Vol. IX, pp. 169–319. - [3] W.J. Casteel Jr., A.P. Wilkinson, H. Borrmann, R.E. Serfass, N. Bartlett, Inorg. Chem. 31 (1992) 3124–3131. - [4] H. Schäfer, H.G. Schnering, K.J. Niehues, H.G. Nieder-Vahrenholz, J. Less Common Metals 9 (1965) 95–104. - [5] N. Bartlett, A. Tressaud, C.R. Seances Acad. Sci. C278 (1974) 1501–1504. - [6] N. Bartlett, D.H. Lohmann, J. Chem. Soc. (1964) 619-626. - [7] B.G. Müller, M. Serafin, Eur. J. Solid State Inorg. Chem. 29 (1992) 625–634 - [8] A.F. Wright, B.E. Fender, N. Bartlett, K. Leary, Inorg. Chem. 17 (1978) 748–749. - [9] P.R. Rao, A. Tressaud, N. Bartlett, J. Inorg. Nucl. Chem. Suppl. (1976) 23–28. - [10] B. Žemva, K. Lutar, A. Jesih, W.J. Casteel Jr., N. Bartlett, J. Chem. Soc., Chem. Commun. (1989) 346–347. - [11] R.T. Payne, L.B. Asprey, Inorg. Chem. 13 (1974) 1529–1531. - [12] J.H. Holloway, R.D. Peacock, J. Chem. Soc. (1963) 3892–3893. - [13] W. Casteel Jr., T. Horwitz, Eur. J. Solid State Inorg. Chem. 29 (1992) 649–657. - [14] G.M. Lucier, J.M. Whalen, N. Bartlett, J. Fluorine Chem. 89 (1998) 101–104 - [15] T.E. Mallouk, G.L. Rosenthal, G. Müller, R. Brusasco, N. Bartlett, Inorg. Chem. 23 (1984) 3167–3173. - [16] K.O. Christe, D.A. Dixon, J. Am. Chem. Soc. 114 (1992) 2978–2985. - [17] L. Graham, O. Graudejus, N.K. Jha, N. Bartlett, Coord. Chem. Rev. 197 (2000) 321–334. - [18] A.G. Sharpe, J. Chem. Soc. (1950) 3444-3450. - [19] A.G. Sharpe, J. Chem. Soc. (1953) 197-199. - [20] R. dePape, G. Ferey, Mater. Res. Bull. 21 (1986) 971-978. - [21] B. Žemva, K. Lutar, M. Fele-Beuermann, J. Allman, C. Shen, N. Bartlett, J. Am. Chem. Soc. 117 (1995) 10025–10034. - [22] O. Graudejus, A.P. Wilkinson, L.C. Chacón, N. Bartlett, Inorg. Chem. 39 (2000) 2794–2800. - [23] R.W.G. Wyckoff, Crystal Structures, Interscience Publishers, London, 1963, Vol. 1, p. 10. - [24] D.E. McKee, N. Bartlett, Inorg. Chem. 12 (1973) 2738-2740. - [25] T.J. Richardson, F.L. Tanzella, N. Bartlett, J. Am. Chem. Soc. 108 (1986) 4937–4943. - [26] G.B. Hargreaves, R.D. Peacock, J. Chem. Soc. (1960) 1099–1103. - [27] A.J. Edwards, R.D. Peacock, R.W.H. Small, J. Chem. Soc. (1962) 4486–4491.